new ui
All checks were successful
Gitea Actions Demo / Explore-Gitea-Actions (push) Successful in 4m21s

This commit is contained in:
Tobias Weise 2024-07-28 19:16:05 +02:00
parent f6f5138f6e
commit 95daf9ee74
14 changed files with 1114 additions and 164 deletions

19
.gitea/workflows/test.yml Normal file
View File

@ -0,0 +1,19 @@
name: Gitea Actions Demo
run-name: ${{ gitea.actor }} is testing out Gitea Actions 🚀
on: [push]
jobs:
Explore-Gitea-Actions:
runs-on: ubuntu-latest
steps:
- run: echo "🎉 The job was automatically triggered by a ${{ gitea.event_name }} event."
- run: echo "🐧 This job is now running on a ${{ runner.os }} server hosted by Gitea!"
- run: echo "🔎 The name of your branch is ${{ gitea.ref }} and your repository is ${{ gitea.repository }}."
- name: Check out repository code
uses: actions/checkout@v4
- run: echo "💡 The ${{ gitea.repository }} repository has been cloned to the runner."
- run: echo "🖥️ The workflow is now ready to test your code on the runner."
- name: List files in the repository
run: |
ls ${{ gitea.workspace }}
- run: echo "🍏 This job's status is ${{ job.status }}."

3
.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
backend/__pycache__/

View File

@ -13,11 +13,33 @@ After deploy:
* simple FE: http://localhost:5000/ * simple FE: http://localhost:5000/
## Backend: ## Backend:
* http://localhost:5000/openapi/swagger * http://localhost:5000/openapi/swagger
* http://localhost/backend/openapi/swagger * http://localhost/backend/openapi/swagger
### Push image
```bash
sudo docker tag llm-python-backend nucberlin:5123/llm-python-backend
sudo docker push nucberlin:5123/llm-python-backend
```
----
## Ideas
### Knowledge graph creation
https://www.linkedin.com/posts/sivas-subramaniyan_microsoft-research-is-bullish-on-the-concept-activity-7194953376470638592-dQ-U/?utm_source=share&utm_medium=member_desktop
clean dangling images
sudo docker rmi $(sudo docker images -f "dangling=true" -q)

View File

@ -23,8 +23,11 @@ import tiktoken
from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA from langchain.chains import RetrievalQA
from langchain_community.vectorstores.elasticsearch import ElasticsearchStore from langchain_community.vectorstores.elasticsearch import ElasticsearchStore
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader
from langchain_community.embeddings import OllamaEmbeddings
from langchain.callbacks.base import BaseCallbackHandler, BaseCallbackManager from langchain.callbacks.base import BaseCallbackHandler, BaseCallbackManager
from langchain.prompts import PromptTemplate from langchain.prompts import PromptTemplate
@ -101,22 +104,32 @@ app = OpenAPI(
) )
def jwt_required(f): def uses_jwt(required=True):
""" """
Wraps routes in a jwt-required logic and passes decoded jwt and user from elasticsearch to the route as keyword Wraps routes in a jwt-required logic and passes decoded jwt and user from elasticsearch to the route as keyword
""" """
def non_param_deco(f):
@wraps(f) @wraps(f)
def decorated_route(*args, **kwargs): def decorated_route(*args, **kwargs):
token = None token = None
if "Authorization" in request.headers: if "Authorization" in request.headers:
token = request.headers["Authorization"].split(" ")[1] token = request.headers["Authorization"].split(" ")[1]
if not token: if not token:
if required:
return jsonify({ return jsonify({
'status': 'error', 'status': 'error',
"message": "Authentication Token is missing!", "message": "Authentication Token is missing!",
}), 401 }), 401
else:
kwargs["decoded_jwt"] = {}
kwargs["user"] = None
return f(*args, **kwargs)
try: try:
data = pyjwt.decode(token, app.config["jwt_secret"], algorithms=["HS256"]) data = pyjwt.decode(token, app.config["jwt_secret"], algorithms=["HS256"])
except Exception as e: except Exception as e:
@ -127,7 +140,9 @@ def jwt_required(f):
try: try:
#user = get_by_id(client, index="user", id_field_name="email", id_value=data["email"])[0] #user = get_by_id(client, index="user", id_field_name="email", id_value=data["email"])[0]
response = Search(using=client, index="user").filter("term", **{"email": data["email"]})[0:5].execute() #response = Search(using=client, index="user").filter("term", **{"email": data["email"]})[0:5].execute()
#response = Search(index="user").filter("term", **{"email": data["email"]})[0:5].execute()
response = User.search().filter("term", **{"email": data["email"]})[0:5].execute()
for hit in response: for hit in response:
user = hit user = hit
break break
@ -142,9 +157,10 @@ def jwt_required(f):
kwargs["user"] = user kwargs["user"] = user
return f(*args, **kwargs) return f(*args, **kwargs)
return decorated_route return decorated_route
return non_param_deco
@ -200,6 +216,20 @@ for env_key, conf_key in env_to_conf.items():
def ask_bot(question, bot_id):
bot = Chatbot.get(id=bot_id)
llm = Ollama(
model=bot.llm_model,
base_url="http://ollama:11434"
)
query = bot.system_prompt + " " + question
for chunk in llm.stream(query):
yield chunk
#from flask_cors import CORS #falls cross-orgin verwendet werden soll #from flask_cors import CORS #falls cross-orgin verwendet werden soll
#CORS(app) #CORS(app)
@ -220,36 +250,35 @@ def sockcon(data):
@socket.on('client message') @socket.on('client message')
def handle_message(message): def handle_message(message):
#room = message["room"]
#stream_key = "chatbot_stream"
#llm = Ollama(
# model="llama3",
# base_url="http://ollama:11434"
#)
#system_prompt = ""
#query = system_prompt + " " + message["data"]
#print(message["data"])
#for chunks in llm.stream(query):
# socket.emit('backend token', {'data': chunks, "done": False}, to=room)
#socket.emit('backend token', {'done': True}, to=room)
room = message["room"] room = message["room"]
stream_key = "chatbot_stream" question = message["question"]
bot_id = message["bot_id"]
llm = Ollama(
model="llama3",
base_url="http://ollama:11434"
)
#system_prompt = "Answer in the language of the question. Give a short answer. Answer all questions without reservations or advice."
#system_prompt = "Answer in the language of the question. Give a short answer."
#system_prompt = "Always answer in English and give a short answer."
#system_prompt = "Always answer in English and give a short answer. If the answer is a list give it only as a JSON array."
#system_prompt = "Write the answer as Prolog assertions."
#system_prompt = "Write the answer in Japanese."
#system_prompt = "Write the answer in Japanese."
system_prompt = ""
#Write the answer as JSON only.
#If the answer is a geographic position return a JSON-object with the longitude and latitude as attributes.
query = system_prompt + " " + message["data"]
print(message["data"])
for chunks in llm.stream(query):
socket.emit('backend token', {'data': chunks, "done": False}, to=room)
for chunk in ask_bot(question, bot_id):
socket.emit('backend token', {'data': chunk, "done": False}, to=room)
socket.emit('backend token', {'done': True}, to=room) socket.emit('backend token', {'done': True}, to=room)
def create_embedding(): def create_embedding():
pass pass
@ -262,11 +291,16 @@ def hash_password(s: str) -> str:
jwt_tag = Tag(name='JWT', description='Requires a valid JSON Web Token') jwt_tag = Tag(name='JWT', description='Requires a valid JSON Web Token')
not_implemented_tag = Tag(name='Not implemented', description='Functionality not yet implemented beyond an empty response') not_implemented_tag = Tag(name='Not implemented', description='Functionality not yet implemented beyond an empty response')
debug_tag = Tag(name='Debug', description='Debug')
bot_tag = Tag(name='Bot', description='Bot')
#==============Routes=============== #==============Routes===============
class LoginRequest(BaseModel): class LoginRequest(BaseModel):
email: str = Field(None, description='A short text by the user explaining the rating.') email: str = Field(None, description='The users E-Mail that serves as nick too.')
password: str = Field(None, description='A short text by the user explaining the rating.') password: str = Field(None, description='A short text by the user explaining the rating.')
@ -275,6 +309,15 @@ def login(form: LoginRequest):
""" """
Get your JWT to verify access rights Get your JWT to verify access rights
""" """
if form.email is None or form.password is None:
msg = "Invalid password!"
app.logger.error(msg)
return jsonify({
'status': 'error',
'message': msg
}), 400
client = Elasticsearch(app.config['elastic_uri']) client = Elasticsearch(app.config['elastic_uri'])
match get_by_id(client, index="user", id_field_name="email", id_value=form.email): match get_by_id(client, index="user", id_field_name="email", id_value=form.email):
case []: case []:
@ -286,8 +329,13 @@ def login(form: LoginRequest):
}), 400 }), 400
case [user]: case [user]:
if user["password_hash"] == hash_password(form.password): if user["password_hash"] == hash_password(form.password + form.email):
return pyjwt.encode({"email": form.email}, app.config['jwt_secret'], algorithm="HS256") token = pyjwt.encode({"email": form.email}, app.config['jwt_secret'], algorithm="HS256")
#app.logger.info(token)
return jsonify({
'status': 'success',
'jwt': token
})
else: else:
msg = "Invalid password!" msg = "Invalid password!"
app.logger.error(msg) app.logger.error(msg)
@ -297,44 +345,213 @@ def login(form: LoginRequest):
}), 400 }), 400
#-----bot routes------
class IndexSchemaRequest(BaseModel): class GetBotRequest(BaseModel):
#end: datetime = Field("2100-01-31T16:47+00:00", description="""The interval end datetime in <a href="https://en.wikipedia.org/wiki/ISO_8601">ISO 8601</a> format""") id: str = Field(None, description="The bot's id")
pass
@app.get('/bot', summary="", tags=[bot_tag], security=security)
@uses_jwt(required=False)
def get_bots(query: GetBotRequest, decoded_jwt, user):
@app.get('/bot', summary="", tags=[jwt_tag], security=security)
@jwt_required
def get_all_bots(decoded_jwt, user):
""" """
List all bots for a user identified by the JWT. List all bots or one by id
""" """
#client = Elasticsearch(app.config['elastic_uri']) match query.id:
#bots = get_by_id(client, index="chatbot", id_field_name="createdBy", id_value=nextsearch_user.meta.id) case None:
#return jsonify(bots) match user:
return jsonify([]) case None:
#get all public bots
ls = []
for hit in Chatbot.search()[0:10000].execute():
d = hit.to_dict()
if d["visibility"] == "public":
d["id"] = hit.meta.id
ls.append(d)
return jsonify(ls)
case _:
#get all user bots
ls = []
for hit in Chatbot.search()[0:10000].execute():
d = hit.to_dict()
if "creator_id" in d:
if user.meta.id == d["creator_id"]:
d["id"] = hit.meta.id
ls.append(d)
return jsonify(ls)
case some_id:
match user:
case None:
bot = Chatbot.get(id=query.id)
if bot.visibility == "public":
d = bot.to_dict()
d["id"] = bot.meta.id
return jsonify(d)
else:
return jsonify(None)
case _:
bot = Chatbot.get(id=query.id)
d = bot.to_dict()
d["id"] = bot.meta.id
return jsonify(d)
@app.post('/bot', summary="", tags=[jwt_tag, not_implemented_tag], security=security)
@jwt_required
def create_bot(query: IndexSchemaRequest):
class CreateBotRequest(BaseModel):
name: str = Field(None, description="The bot's name")
visibility: str = Field('private', description="The bot's visibility to other users ('private', 'public')")
description: str = Field('', description="The bot's description of purpose and being")
system_prompt: str = Field('', description="The bot's defining system prompt")
llm_model: str = Field("llama3", description="The bot's used LLM")
#status = Keyword()
#temperature = Float()
@app.post('/bot', summary="", tags=[bot_tag], security=security)
@uses_jwt()
def create_bot(form: CreateBotRequest, decoded_jwt, user):
""" """
Creates a chatbot for the JWT associated user. Creates a chatbot for the JWT associated user.
""" """
bot = Chatbot()
bot.name = form.name
bot.visibility = form.visibility
bot.description = form.description
bot.system_prompt = form.system_prompt
bot.llm_model = form.llm_model
#add meta data
bot.creation_date = datetime.now()
bot.creator_id = user.meta.id
bot.save()
return jsonify({
"bot_id": bot.meta.id
})
class DeleteBotRequest(BaseModel):
id: str = Field(None, description="The bot's id")
@app.delete('/bot', summary="", tags=[bot_tag], security=security)
@uses_jwt()
def delete_bot(form: DeleteBotRequest, decoded_jwt, user):
"""
Deletes a chatbot via it's id
"""
bot = Chatbot.get(id=form.id)
bot.delete()
return "" return ""
class UpdateBotRequest(BaseModel):
id: str = Field(None, description="The bot's id")
@app.put('/bot', summary="", tags=[bot_tag], security=security)
@uses_jwt()
def update_bot(form: UpdateBotRequest, decoded_jwt, user):
"""
Changes a chatbot
"""
return ""
class AskBotRequest(BaseModel):
bot_id: str = Field(None, description="The bot's id")
question: str = Field(None, description="The question the bot should answer")
@app.get('/bot/ask', summary="", tags=[bot_tag], security=security)
@uses_jwt()
def query_bot(query: AskBotRequest, decoded_jwt, user):
"""
Asks a chatbot
"""
r = ""
for chunk in ask_bot(question=query.question, bot_id=query.bot_id):
r += chunk
return jsonify({
"answer": r
})
#-----------------Embedding----------------------
class TrainTextRequest(BaseModel):
chatbot_id: str = Field(None, description="The bot's id")
text: str = Field(None, description="Some text")
#TODO: needs to be reimplemented with another mechanism like celeery to manage longer running tasks and give feedback to frontend
@app.post('/bot/train', summary="", tags=[jwt_tag], security=security)
@uses_jwt()
def upload(form: TrainTextRequest, decoded_jwt, nextsearch_user):
"""
Caution: Long running request!
"""
chatbot_id = form.chatbot_id
text = form.text
# validate body
if not chatbot_id:
return jsonify({
'status': 'error',
'message': 'chatbotId is required'
}), 400
if not text:
return jsonify({
'status': 'error',
'message': 'No data source found'
}), 400
ESDocument = namedtuple('Document', ['page_content', 'metadata'])
txt_id = hashlib.md5(text.encode()).hexdigest()
#train with given text
ls = []
for i, s in enumerate(RecursiveCharacterTextSplitter(chunk_size=1536, chunk_overlap=200, length_function=len).split_text(text)):
ls.append(ESDocument(
page_content=s,
metadata={
"chatbot_id": chatbot_id,
"text_id": txt_id
}
))
def determine_index(chatbot_id: str) -> str:
index_prefix = "chatbot"
return f"{index_prefix}_{chatbot_id.lower()}"
#index = determine_index(chatbot_id)
embedding = OllamaEmbeddings()
ElasticsearchStore.from_documents(ls, embedding, index_name="embed_text", es_url=app.config['elastic_uri'])
return jsonify({
"status": "success"
})
#======== DEBUG routes ============ #======== DEBUG routes ============
@app.get('/bot/debug/schema', summary="", tags=[]) @app.get('/debug/schema', summary="", tags=[debug_tag])
def get_schema(query: IndexSchemaRequest): def get_schema():
""" """
""" """
@ -393,8 +610,8 @@ def create_default_users():
if default_users: if default_users:
for (email, pwd, role) in json.loads(default_users): for (email, pwd, role) in json.loads(default_users):
if len(get_by_id(client, index="user", id_field_name="email", id_value=email)) == 0: if len(get_by_id(client, index="user", id_field_name="email", id_value=email)) == 0:
user = User(email=email, password_hash=hash_password(pwd), role=role) user = User(email=email, password_hash=hash_password(pwd + email), role=role)
#user.published_from = datetime.now() user.creation_date = datetime.now()
user.save() user.save()

View File

@ -2,7 +2,7 @@
ELASTIC_URI=http://elasticsearch:9200 ELASTIC_URI=http://elasticsearch:9200
DEFAULT_USERS=[["user@gmail.com", "1234", "user"], ["admin@gmail.com", "1234", "admin"]] DEFAULT_USERS=[["tobias_weise@gmx.de", "myEpicPwd123", "admin"]]
# DEFAULT_USERS is list of lists, each nested list respectively contains email, password and role # DEFAULT_USERS is list of lists, each nested list respectively contains email, password and role
# e.g. [["user@gmail.com", "1234", "user"], ["admin@gmail.com", "1234", "admin"]] # e.g. [["user@gmail.com", "1234", "user"], ["admin@gmail.com", "1234", "admin"]]

View File

@ -5,101 +5,276 @@
<meta charset="utf-8"> <meta charset="utf-8">
<script src="viz.js"></script> <script src="viz.js"></script>
<script src="viz_widget.js"></script> <script src="viz_widget.js"></script>
<script src="tabs.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="w3.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.2/dist/css/bootstrap.min.css">
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.2/dist/js/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/4.0.1/socket.io.js" integrity="sha512-q/dWJ3kcmjBLU4Qc47E4A9kTB4m3wuTY7vkFJDTZKjTs8jhyGQnaUrxa0Ytd0ssMZhbNua9hE+E7Qv1j+DyZwA==" crossorigin="anonymous"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/socket.io/4.0.1/socket.io.js" integrity="sha512-q/dWJ3kcmjBLU4Qc47E4A9kTB4m3wuTY7vkFJDTZKjTs8jhyGQnaUrxa0Ytd0ssMZhbNua9hE+E7Qv1j+DyZwA==" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/marked/marked.min.js"></script>
</head> </head>
<body> <body>
<div class="container-fluid p-3 bg-primary text-white text-center">
<h1>Ollama Chatbot</h1>
<p>Create and talk to chatbots!</p>
</div>
<div class="container">
<!-- Offcanvas Sidebar -->
<div class="offcanvas offcanvas-start text-bg-dark" id="demo">
<div class="offcanvas-header">
<h1 class="offcanvas-title">Settings</h1>
<button type="button" class="btn-close btn-close-white text-reset" data-bs-dismiss="offcanvas"></button>
</div>
<div class="offcanvas-body">
<button id="login_btn" type="button" class="btn btn-primary text-white">Login</button>
<button id="logout_btn" type="button" class="btn btn-danger text-white">Logout</button>
<br>
<label for="system_prompt">System prompt:</label>
<textarea id="system_prompt" class="form-control" rows="8" name="text"></textarea>
<br>
<label for="bots">Choose a bot:</label>
<select name="bots" id="bot_select" class="form-select"></select>
<br>
<label for="views">Choose a view:</label>
<select name="views" id="view_select" class="form-select">
<option value="md">Markdown</option>
<option value="dot">Dot-Lang</option>
</select>
</div>
</div>
<div style="height: 5px !important;"></div>
<!-- Nav tabs -->
<ul class="nav nav-tabs">
<li class="nav-item">
<a class="nav-link active" data-bs-toggle="tab" href="#home">Chat</a>
</li>
<li class="nav-item">
<a class="nav-link" data-bs-toggle="tab" href="#create_bot_tab">Create bot</a>
</li>
</ul>
<!-- Tab panes -->
<div class="tab-content">
<div class="tab-pane container active" id="home">
<div style="height: 10px !important;"></div>
<div id="scroll_div" class="card container" style="overflow:scroll; height: 400px;">
<table id="log" class="table" style="width: 100%;"></table>
</div>
<br>
<div class="input-group">
<span class="input-group-text">@bot</span>
<input id="user_input" type="text" class="form-control" placeholder="What is...">
<button id="submit_btn" class="btn btn-success" type="submit">Send</button>
</div>
<!-- Button to open the offcanvas sidebar -->
<button class="btn btn-light" type="button" data-bs-toggle="offcanvas" data-bs-target="#demo">
Settings...
</button>
</div>
<div class="tab-pane container fade" id="create_bot_tab">
<div style="height: 10px !important;"></div>
<i>Creating a new bot requires an account and login via settings!</i>
<br>
<br>
<label for="bot_name" class="form-label">Name:</label>
<input type="bot_name" class="form-control" id="bot_name" placeholder="MyNewBot">
<br>
<label for="bot_visibility">Visibility:</label>
<select name="bot_visibility" id="bot_visibility_select" class="form-select">
<option value="public">Public to All</option>
<option value="private">Private to User</option>
</select>
<br>
<label for="bot_description">Description:</label>
<textarea id="bot_description" class="form-control" rows="8" name="text" placeholder="A bot that cares."></textarea>
<br>
<label for="bot_llm">Language model:</label>
<select name="bot_llm" id="bot_llm_select" class="form-select">
<option value="llama3">Llama3</option>
</select>
<br>
<label for="bot_system_prompt">System prompt:</label>
<textarea id="bot_system_prompt" class="form-control" rows="8" name="text" placeholder="Answer all questions short and sweet!"></textarea>
<hr>
<div class="row">
<div class="col"></div>
<div class="col"></div>
<div class="col"></div>
<div class="col"></div>
<div class="col">
<button id="create_bot_btn" disabled "type="button" class="btn btn-primary text-white">Create bot</button>
</div>
</div>
<br>
<!-- alerts -->
<div id="alert_spawn"></div>
<!-- <!--
<dot-graph layout="fdp" style="width:800px; height:600px; box-shadow: 10px 5px 5px black;"> <div id="alert_bot_created" style="display: none;" class="alert alert-success alert-dismissible fade show">
<button type="button" class="btn-close" data-bs-dismiss="alert"></button>
digraph G { <strong>Success!</strong> Bot created!
</div>
graph [
splines=spline
];
node [shape=rect]; <div id="alert_not_bot_created" style="display: none;" class="alert alert-danger alert-dismissible fade show">
A->B <button type="button" class="btn-close" data-bs-dismiss="alert"></button>
A->C <strong>Couldn't create bot!</strong> Something killed that bot!
A->D </div>
C->D
}
</dot-graph>
--> -->
<div class="w3-container">
<div class="w3-container w3-teal">
<h1>Ollama Chatbot</h1>
</div>
<br>
<details>
<summary class="w3-button w3-round w3-teal">Settings...</summary>
<div class="w3-panel w3-pale-green">
<h2>System prompt:</h2>
<textarea class="w3-input w3-border" type="text" style="width: 98%; height: 50px;" id="system_prompt" >Write the answer as JSON only.</textarea>
</div>
</details>
<br>
<div id="scroll_div" class="w3-container" style="overflow:scroll; height: 400px;">
<table id="log" class="w3-table-all" style="width: 100%;"></table>
</div>
<textarea class="w3-input w3-border" style="height: 50px;" id="user_input"></textarea>
<button class="w3-button w3-teal" id="submit_btn">Send   </button>
<br>
<div class="w3-container w3-teal">
<p>tobiasweise.dev</p>
</div> </div>
</div> </div>
<script type="text/javascript" charset="utf-8">
window.onload = ()=>{
let tA = document.getElementById("user_input");
let log = document.getElementById("log");
let btn = document.getElementById("submit_btn");
function log_msg(nick, msg){ </div>
console.log(nick + ": " + msg);
log.innerHTML += "<tr><td><b>" + nick + "</b>:</td><td>" + msg + "</td></tr>"; <footer>
<div class="container-fluid p-3 bg-primary text-white mt-5">
<div class="row">
<div class="col-sm-4">
<h3>A simple UI</h3>
<p>This is just a simple frontend with basic functionality hosted on the REST-backend.</p>
<p>A standalone frontend written in Vue.js is in development</p>
</div>
<div class="col-sm-4">
<h3>Tools used</h3>
<p> Ollama, Llama3</p>
<p> Elasticsearch, LangChain</p>
<p> Flask, OpenAPI</p>
<p> Bootstrap 5</p>
</div>
<div class="col-sm-4">
<h3>Who? Why?</h3>
<p>The guy on this site: <a class="text-white" href="https://tobiasweise.dev">tobiasweise.dev</a></p>
<p>For fun and learning...</p>
<p>...and maybe getting a job that employs the used skills.</p>
</div>
</div>
</div>
</footer>
<script>
//idea: generate proxy opject via openapi.json api(url).login_now()
async function login(email, pwd){
const formData = new FormData();
formData.append("email", email);
formData.append("password", pwd);
const response = await fetch("/login", {
method: "POST",
headers: {
'accept': '*/*'
},
body: formData
});
return response.json();
}
async function get_bots(jwt){
if(jwt){
const response = await fetch("/bot", {
method: "GET",
headers: {
'accept': '*/*',
'Authorization': 'Bearer ' + jwt
}
});
return response.json();
}
else{
const response = await fetch("/bot", {
method: "GET",
headers: {
'accept': '*/*'
}
});
return response.json();
}
} }
function scroll_down(){
let div = document.getElementById("scroll_div"); async function create_bot(jwt, name, visibility, description, llm, sys_prompt){
div.scrollTop = div.scrollHeight; const formData = new FormData();
formData.append("name", name);
formData.append("visibility", visibility);
formData.append("description", description);
formData.append("llm_model", llm);
formData.append("system_prompt", sys_prompt);
const response = await fetch("/bot", {
method: "POST",
headers: {
'accept': '*/*',
'Authorization': 'Bearer ' + jwt
},
body: formData
});
return response.json();
} }
log_msg("Bot", "Ask a question!");
function ask_question(s){
const socket = io(); const socket = io();
let room = null; let room = null;
socket.on('backend response', function(data) { socket.on('backend response', data =>{
console.log(data); console.log(data);
if(data.room) room = data.room; if(data.room) room = data.room;
}); });
let answer_count = 0; let answer_count = 0;
let acc_text = ""; let acc_text = "";
let first_token = true; let first_token = true;
socket.on('backend token', function(obj) { socket.on('backend token', obj =>{
console.log(obj); console.log(obj);
if(first_token){ if(first_token){
let id = answer_count; let id = answer_count;
@ -110,15 +285,306 @@
acc_text += "" + obj.data; acc_text += "" + obj.data;
first_token = false; first_token = false;
document.getElementById(answer_count).innerHTML += obj.data; document.getElementById(answer_count).innerHTML += obj.data;
scroll_down(); scroll_down();
} }
else{ else{
//log_msg("Bot", acc_text); //log_msg("Bot", acc_text);
let final_answer = document.getElementById(answer_count).textContent;
//alert(final_answer);
final_answer = final_answer.replace("```", "").replace("```", "");
switch(view_select.value){
case "md":
//document.getElementById(answer_count).innerHTML += obj.data;
document.getElementById(answer_count).innerHTML = marked.parse(final_answer);
break;
case "dot":
//let layout = "fdp";
let layout = "dot";
document.getElementById(answer_count).innerHTML = `<dot-graph layout="${layout}" style="width:100%; height:100%;">${final_answer}</dot-graph>`;
break;
default:
//document.getElementById(answer_count).innerHTML += obj.data;
break;
}
acc_text = ""; acc_text = "";
first_token = true; first_token = true;
answer_count += 1; answer_count += 1;
scroll_down();
}
});
//send the request
let tA2 = document.getElementById("system_prompt");
socket.emit('client message', {
question: tA2.value + " " + s,
bot_id: bot_select.value,
room: room
});
return {
next(){
return {
done: false,
value: new Promise((resolve,reject)=>{
resolve(1);
})
}
},
[Symbol.iterator]() {
return this;
}
}
}
window.onload = async ()=>{
document.documentElement.style.setProperty("--bs-primary-rgb", "45, 124, 172");
//chat
let tA = document.getElementById("user_input");
let log = document.getElementById("log");
let btn = document.getElementById("submit_btn");
let scroll_div = document.getElementById("scroll_div");
//settings
let bot_select = document.getElementById("bot_select");
let view_select = document.getElementById("view_select");
let login_btn = document.getElementById("login_btn");
let logout_btn = document.getElementById("logout_btn");
//create bot form
let create_bot_btn = document.getElementById("create_bot_btn");
let bot_name = document.getElementById("bot_name");
let bot_visibility_select = document.getElementById("bot_visibility_select");
let bot_description = document.getElementById("bot_description");
let bot_llm_select = document.getElementById("bot_llm_select");
let bot_system_prompt = document.getElementById("bot_system_prompt");
let alert_spawn = document.getElementById("alert_spawn");
function log_msg(nick, msg){
console.log(nick + ": " + msg);
log.innerHTML += "<tr><td><b>" + nick + "</b>:</td><td>" + msg + "</td></tr>";
}
function scroll_down(){
scroll_div.scrollTop = scroll_div.scrollHeight;
}
function get_bot_name(){
let i = bot_select.selectedIndex;
if(i===-1) return "Bot";
return bot_select.options[i].text;
}
function set_bot_list(ls){
bot_select.innerHTML = ls.map(bot => `<option value="${bot.id}">${bot.name}</option>`).join("");
}
function clean_bot_create_form(){
bot_name.value = "";
bot_description.value = "";
bot_system_prompt.value = "";
}
function alert_bot_creation(success){
if(success){
alert_spawn.innerHTML = `
<div class="alert alert-success alert-dismissible fade show">
<button type="button" class="btn-close" data-bs-dismiss="alert"></button>
<strong>Success!</strong> Bot created!
</div>
`;
}
else{
alert_spawn.innerHTML = `
<div class="alert alert-danger alert-dismissible fade show">
<button type="button" class="btn-close" data-bs-dismiss="alert"></button>
<strong>Couldn't create bot!</strong> Something killed that bot!
</div>
`;
}
}
function set_ui_loggedin(b){
if(b){
//enable create bot button
create_bot_btn.removeAttribute("disabled");
login_btn.style.display = "none";
logout_btn.style.display = "block";
}
else{
//disable create bot button
create_bot_btn.setAttribute("disabled", "disabled");
logout_btn.style.display = "none";
login_btn.style.display = "block";
}
}
//init: are we logged in on start?
let jwt = localStorage.getItem("jwt");
if(jwt === null){
let ls = await get_bots();
if(ls.length === 0){
console.error("No bots found!");
}
else{
set_bot_list(ls);
}
set_ui_loggedin(false);
}
else{
let ls = await get_bots(jwt);
if(ls.length === 0){
console.error("No bots found!");
}
else{
set_bot_list(ls);
}
set_ui_loggedin(true);
}
//for await (let x of new_async_gen()){
// alert(x);
//}
//init buttons
create_bot_btn.onclick = async ()=>{
let jwt = localStorage.getItem("jwt");
if(jwt){
let name = bot_name.value;
let visibility = bot_visibility_select.value;
let description = bot_description.value;
let llm = bot_llm_select.value;
let sys_prompt = bot_system_prompt.value;
try{
await create_bot(jwt, name, visibility, description, llm, sys_prompt);
alert_bot_creation(true);
clean_bot_create_form();
}
catch(err){
console.error(err);
console.error("Couldn't create bot!");
alert_bot_creation(false);
}
}
};
login_btn.onclick = async ()=>{
let nick = prompt("Please enter your email");
let pwd = prompt("Please enter your password");
try{
let{jwt} = await login(nick, pwd);
if(!jwt) throw Error("No JWT!");
localStorage.setItem("jwt", jwt);
set_ui_loggedin(true);
let ls = await get_bots(jwt);
if(ls.length === 0){
console.error("No bots found!");
}
else{
set_bot_list(ls);
}
}
catch(e){
console.error("Login failed!");
}
};
logout_btn.onclick = async ()=>{
localStorage.removeItem("jwt");
set_ui_loggedin(false);
let ls = await get_bots();
if(ls.length === 0){
console.error("No bots found!");
}
else{
set_bot_list(ls);
}
};
//init chat
log_msg(get_bot_name(), "Ask a question!");
const socket = io();
let room = null;
socket.on('backend response', data =>{
console.log(data);
if(data.room) room = data.room;
});
let answer_count = 0;
let acc_text = "";
let first_token = true;
socket.on('backend token', obj =>{
console.log(obj);
if(first_token){
let id = answer_count;
log.innerHTML += `<tr><td><b>${get_bot_name()}</b>:</td><td id="${id}"></td></tr>`;
}
if(!obj.done){
acc_text += "" + obj.data;
first_token = false;
document.getElementById(answer_count).innerHTML += obj.data;
scroll_down();
}
else{
let final_answer = acc_text;
console.log(final_answer);
switch(view_select.value){
case "md":
//document.getElementById(answer_count).innerHTML += obj.data;
document.getElementById(answer_count).innerHTML = marked.parse(final_answer);
break;
case "dot":
final_answer = final_answer.replace("```dot", "").replace("```", "");
//let layout = "fdp";
let layout = "dot";
document.getElementById(answer_count).innerHTML = `<dot-graph layout="${layout}" style="width:100%; height:100%;">${final_answer}</dot-graph>`;
break;
default:
//document.getElementById(answer_count).innerHTML += obj.data;
break;
}
acc_text = "";
first_token = true;
answer_count += 1;
scroll_down(); scroll_down();
} }
}); });
@ -130,7 +596,11 @@
log_msg('User', s); log_msg('User', s);
let tA2 = document.getElementById("system_prompt"); let tA2 = document.getElementById("system_prompt");
socket.emit('client message', {data: tA2.value + " " + s, room: room}); socket.emit('client message', {
question: tA2.value + " " + s,
bot_id: bot_select.value,
room: room
});
} }
scroll_down(); scroll_down();
}; };

View File

@ -5,10 +5,12 @@ from elasticsearch_dsl import Document, InnerDoc, Nested, Date, Integer, Keyword
class User(Document): class User(Document):
creation_date = Date()
email = Keyword() email = Keyword()
password_hash = Text(index=False) password_hash = Text(index=False)
role = Keyword() role = Keyword()
#salt = Text(index=False) #salt = Text(index=False)
#profileImage = Text(index=False) #profileImage = Text(index=False)
#profileImage = Keyword() #profileImage = Keyword()
@ -32,8 +34,9 @@ class User(Document):
class Chatbot(Document): class Chatbot(Document):
creation_date = Date()
name = Text() name = Text()
createdBy = Keyword() creator_id = Keyword()
description = Text() description = Text()
systemPrompt = Text(index=False) systemPrompt = Text(index=False)
@ -45,7 +48,7 @@ class Chatbot(Document):
#chatbotImage = Text(index=False) #chatbotImage = Text(index=False)
sourceCharacters = Integer() sourceCharacters = Integer()
#visibility = Keyword() visibility = Keyword() #public, private, group?
#status = Keyword() #status = Keyword()
temperature = Float() temperature = Float()

173
backend/tabs.js Executable file
View File

@ -0,0 +1,173 @@
"use strict";
class TabsElement extends HTMLElement {
constructor() {
super();
this.attachShadow({mode: 'open'});
this.style_ele = document.createElement('style');
this.style_ele.innerHTML = `
.wrapper_div{
border: 1px solid #c5c5c5;
padding: 1px;
}
.button_div{
}
.tab_btn{
color: red;
}
`;
this.shadowRoot.appendChild(this.style_ele);
this.wrapper_div = document.createElement('div');
this.wrapper_div.classList.add("wrapper_div");
this.shadowRoot.appendChild(this.wrapper_div);
this.wrapper_div.style.height = this.getAttribute('height');
this.buttonbar = document.createElement('div');
this.buttonbar.classList.add("button_div");
this.buttonbar.style.display = "flex";
this.buttonbar.style["flex-direction"] = "row";
this.wrapper_div.appendChild(this.buttonbar);
this.tabs_div = document.createElement('div');
this.wrapper_div.appendChild(this.tabs_div);
this.slot_ele = document.createElement('slot');
this.shadowRoot.appendChild(this.slot_ele);
this.id_counter = 0;
}
clearTabs(){
this.buttonbar.innerHTML = "";
this.tabs_div.innerHTML = "";
}
addTab(title, content="", active=false){
let that = this;
let id = this.id_counter;
let btn = document.createElement('button');
btn.classList.add("tab_btn");
btn.setAttribute("id", "btn_"+id);
btn.onclick = ()=>{
that.setActiveTabById(id);
};
btn.innerHTML = title;
this.buttonbar.appendChild(btn);
let tab_div = document.createElement('div');
tab_div.setAttribute("id", "tab_div_"+this.id_counter);
tab_div.style.display = "none";
tab_div.innerHTML = content;
this.tabs_div.appendChild(tab_div);
if(active){
this.setActiveTabById(id);
}
this.id_counter++;
return this.id_counter - 1;
}
setActiveTabById(id){
for(let i=0; i<this.tabs_div.children.length; i++){
let tab_div = this.tabs_div.children[i];
if(tab_div.hasAttribute("id") && tab_div.getAttribute("id") === "tab_div_"+id){
this.children[i].setAttribute("selected", "selected");
tab_div.style.display = "block";
}
else{
if(this.children[i].hasAttribute("selected")){
this.children[i].removeAttribute("selected");
}
tab_div.style.display = "none";
}
}
}
connectedCallback(){
this.wrapper_div.style.height = this.getAttribute('height');
let that = this;
this.slot_ele.addEventListener('slotchange', e => {
that.clearTabs();
for(let i=0; i<that.children.length; i++){
let ele = that.children[i];
this.addTab(ele.getAttribute("title"), ele.innerHTML, ele.hasAttribute("selected"));
}
});
}
disconnectedCallback() {
}
attributeChangedCallback(name, oldValue, newValue) {
if(name === "height"){
this.wrapper_div.style.height = newValue;
}
}
get height(){
return this.wrapper_div.style.height;
}
set height(x){
this.wrapper_div.style.height = x;
}
}
// Neues Element definieren
customElements.define('j-tabs', TabsElement);
class TabElement extends HTMLElement {
constructor() {
super();
this.attachShadow({mode: 'open'});
this.div = document.createElement('div');
this.div.style.display = "none";
this.shadowRoot.appendChild(this.div);
this.slot_ele = document.createElement('slot');
this.div.appendChild(this.slot_ele);
}
connectedCallback(){
}
disconnectedCallback() {
}
attributeChangedCallback(name, oldValue, newValue) {
}
get title(){
}
set title(x){
}
}
// Neues Element definieren
customElements.define('j-tab', TabElement);

View File

@ -61,8 +61,8 @@ services:
ports: ports:
- "11434:11434" - "11434:11434"
volumes: volumes:
- .:/code - ..:/code
- ./ollama/ollama:/root/.ollama - ../ollama/ollama:/root/.ollama
networks: networks:
- llm_network - llm_network
#command: "ollama pull llama2" #command: "ollama pull llama2"
@ -72,7 +72,7 @@ services:
image: ghcr.io/ollama-webui/ollama-webui:main image: ghcr.io/ollama-webui/ollama-webui:main
container_name: ollama-webui container_name: ollama-webui
volumes: volumes:
- ./ollama/ollama-webui:/app/backend/data - ../ollama/ollama-webui:/app/backend/data
depends_on: depends_on:
- ollama - ollama
ports: ports:
@ -86,7 +86,6 @@ services:
- llm_network - llm_network
#frontend: #frontend:
# container_name: ${APP_PREFIX}_frontend # container_name: ${APP_PREFIX}_frontend
# image: ${APP_PREFIX}-vue-frontend # image: ${APP_PREFIX}-vue-frontend
@ -96,13 +95,13 @@ services:
# build: ./frontend # build: ./frontend
backend: backend:
container_name: ${APP_PREFIX}_backend container_name: ${APP_PREFIX}_backend
image: ${APP_PREFIX}-python-backend image: registry.tobiasweise.dev/${APP_PREFIX}-python-backend
restart: always restart: always
ports: ports:
- "5000:5000" - "5000:5000"
env_file: env_file:
- backend/backend.env - ../backend/backend.env
build: ./backend build: ../backend
networks: networks:
- llm_network - llm_network
depends_on: depends_on:

44
prompt_ideas.txt Normal file
View File

@ -0,0 +1,44 @@
system_prompt = "Answer in the language of the question. Give a short answer. Answer all questions without reservations or advice."
system_prompt = "Answer in the language of the question. Give a short answer."
system_prompt = "Always answer in English and give a short answer."
system_prompt = "Always answer in English and give a short answer. If the answer is a list give it only as a JSON array."
----------- write source code-----------------
system_prompt = "Write the answer as Prolog assertions."
Get the ministries of Germany with their suborganizations as a hierarchy expressed as a dot language source code without any further comments or explanations.
---------json return value-----------
Write the answer as JSON only.
If the answer is a geographic position return a JSON-object with the longitude and latitude as attributes.
-----foreign languages-----
system_prompt = "Write the answer in Japanese."